

HEALROAD Symposium

ENVIRONMENTAL IMPACT OF THE NEW TECHNOLOGY (LCA)

Esther Lizasoain-Arteaga

University of Cantabria

esther.lizasoain@unican.es

PAVEMENT PRESERVATION & RECYCLING SUMMIT

PPRS NICE 2018 · MARCH 26-28

Contents

- 1. LIFE CYCLE ASSESSMENT
- 2. GOAL AND SCOPE
- 3. LIFE CYCLE INVENTORY
- 4. IMPACT ASSESSMENT
- 5. SENSITIVITY ANALYSIS
- 6. CONCLUSIONS

1. LIFE CYCLE ASSESSMENT

Life Cycle Assessment (LCA) is a standardized method for measuring and comparing the environmental aspects and potential impacts associated with the manufacture, use and disposal of a product, process or service

Figure source: ISO 14040

2. GOAL AND SCOPE

- **Goal**: To demonstrate the sustainability of the induction healed asphalt mixture by comparing the environmental impacts this technology produces with the ones caused by traditional mixtures.
- Functional unit

QR 36

		1 T	f f	ŧ	Ļ	Ŧ	T	T	T
HEALROAD Conventional Conve	entional 0.04	0.04 Conventional V Con	ventional HEALROAD	Conventiona	I Conventional P	Conventional 0.04	0.04 Conventional	Conventional	Conventional
Binder	0.08	0.08	Binder		Binder	0.08	0.08	Binder	
Base	0.22	0.22	Base		Base	0.22	0.22	Base	
	5 m — -		3.75 m ──► = 3.75 m ──►	◄3.75 m -	→ 3.75 m → →	—3.75 m —	3.75 m	▪ - 3.75 m	•
Analysis period	l: 30 year	S							

• System boundaries:

PPRS NICE 2018 · MARCH 26-28

3. LIFE CYCLE INVENTORY

• Primary Data inventories

- GaBi V8.1
- HEALROAD project data
- Literature reviewed

• Maintenance schedule

Voor	HEAL	ROAD	Conventional			
fear	Main lane	Adjacent lanes	Main lane	Adjacent lanes		
0	Initial construction	Initial construction	Initial construction	Initial construction		
5						
10	Induction healing		Mill and overlay			
15	Mill and overlay	Mill and overlay		Mill and overlay		
20			Mill and overlay			
25	Induction healing					
30	Mill	Mill	Mill	Mill		

Infravation An Infrastructure Innovation Programme

3. LIFE CYCLE INVENTORY

- Traffic affection
 - Tools used to calculate traffic emissions
 - Kentucky Highway User Cost Program (KyUCP) v.1.0
 - MOVES

6

4. IMPACT ASSESSMENT (RECIPE CHARACTERIZATION METHOD)

- Climate Change (CC)
- Ozone Depletion (OD)
- Terrestrial Acidification (TA)
- Freshwater Eutrophication (FE)
- Marine Eutrophication (ME)
- Human Toxicity (HT)
- Photochemical Oxidant Formation (POF)
- Particulate Matter Formation (PMF)
- Terrestrial Ecotoxicity (TET)
- Freshwater Ecotoxicity (FET)
- Marine Ecotoxicity (MET)
- Ionising Radiation (IR)
- Agricultural Land Occupation (ALO)
- Urban Land Occupation (ULO)
- Natural Land Transformation (NLT)
- Water Depletion (WD)
- Mineral Resource Depletion (MRD)
- Fossil Fuel Depletion (FD)

4. IMPACT ASSESSMENT (QR 36 section)

4. IMPACT ASSESSMENT (QR 36 section)

4. IMPACT ASSESSMENT (HEALROAD VS Conventional mixture)

- **Goal**: To demonstrate the sustainability of the induction healed asphalt mixture by comparing the environmental impacts this technology produces with the ones caused by traditional mixtures.
- Functional unit

- Analysis period: 30 years
- System boundaries:

4. IMPACT ASSESSMENT (HEALROAD VS Conventional mixture)

5. SENSITIVITY ANALYSIS

- Variability of the generated impacts changing:
 - The amount of RAP
 - 0% → 40%

Figure source: www.fhwa.dot.gov

- > The induction heating machine's diesel consumption
 - 100% **→** 60%

5. SENSITIVITY ANALYSIS (RAP variation)

ReCiPe Midpoint Impact category- RAP variability

- Stan

PPRS NICE 2018 · MARCH 26-28

5. SENSITIVITY ANALYSIS (RAP variation)

15

PPRS NICE 2018 · MARCH 26-28

100%

5. SENSITIVITY ANALYSIS (Induction-heating machine consumption variation)

ReCiPe Midpoint Impact category. Induction-heating machine variability

5. SENSITIVITY ANALYSIS (Induction-heating machine consumption variation)

6. CONCLUSIONS

- The HEALROAD technology has a better performance in 14 of the 17 midpoint impacts and in all the endpoint impacts.
- A reduction between 13% and 18% in the endpoint impacts is possible with the HEALROAD technology.
- When considering the whole road section the material production phase is the most important one, however, under the same conditions, congestion is more critical.
- Leaching effect is negligible when analyzing the "Damage to ecosystems" and "Damage to resource availability" impacts.
- The improvement in the induction-heating machine efficiency in terms of diesel consumption is less effective than increasing the amount of RAP

HEALROAD Symposium

HEALROAD Website: http://healroad.eu/

esther.lizasoain@unican.es

