

Part: 1-1 – HEALROAD laboratory research Part: 1-2 – Full-scale demonstrator Part: 2 – Onsite visit to duraBASt and HEALROAD demonstration

Agenda

9:00 – 9:15	Introduction
9:15 – 10:00	HEALROAD laboratory research (mixes and induction energy) - UC and UoN
10:00 - 10:30	Full scale demonstrator (asphalt production, construction and accelerated pavement testing) - SGS, HEIJMANS and BASt
10:30 - 12:00	Onsite visit to duraBASt facility and HEALROAD demonstration*

Background / Concept of self-healing

- Asphalt mixture is a natural self-healing material. When a crack is open in the road ٠ structure, it can close (heal) when enough temperature and time without traffic are provided.
- However, this process requires days for a complete healing, which in practice is ٠ impossible due to continual traffic flow.

Source: A.García (UoN)

Self-healing of asphalt mixes can be accelerated by means of induction heating, a ٠ technique used to increase the temperature of electrically conductive and magnetic susceptible materials.

Background / Concept of self-healing

HEALROAD: Problems addressed

- Temperature at which optimal self-healing is obtained.
- When to apply self-healing?
- Quantification of service life extention
- Adequate use of the induction healing device (parameters).
- Impact of aging in healing performance
- Quantification of the energy needed.
- Solve the clusters when upscaling.

Main goal of HEALROAD

• The overall objective of the project is the **further development** and the **technical**, **economic and environmental validation** of healable asphalt mixes via induction heating to **overcome the technical barriers for the future industrialization** and market uptake.

October 26th 2017

Scientific & Technical Objectives

- 1. Understand the main chemical and rheological factors influencing the movement of bitumen through cracks in order to identify the most suitable bitumen for this application.
- 2. Optimize from the technical, economic and environmental point of view the parameters that most influence the induction heating of the asphalt mixture: magnetic material and air voids.
- 3. Optimal design of asphalt mixes from the healing capacity and durability point of view.
- 4. Ensure the recyclability of the HEALROAD mixes by defining the amount of virgin material needed to restore the asphalt mixture properties, including its healing capacity.
- 5. Scaling up the production of HEALROAD mixes in a real asphalt plant.

October 26th 2017

Scientific & Technical Objectives

- 6. **Demonstration** of the solution proposed:
 - Demonstrating the healing capacity of a real scale test section through and **Accelerated Pavement Testing**.
 - Economic and environmental feasibility through a LCA and LCC analysis.

Funders

October 26th 2017

Part: 1-1 – HEALROAD laboratory research

University of Nottingham UK | CHINA | MALAYSIA

Breixo Gómez Meijide

Fundamental analysis

	Bitumen type				
	P49	S46	S70	T44	T73
Surface tension [mJ·m ⁻²]	25.5	24.5	24.7	23.2	24.5
Density at 25 ° C [kg·m ⁻³]	1025	1034	1020	1026	1020
Volumetric thermal expansion coefficient [10 ⁻⁴ K ⁻¹]	6.12	6.64	6.69	6.14	6.30
Viscosity at 100 ° C [Pa s]	3.93	2.87	2.00	3.90	2.36
Saturate content [%]	4.9 ±02	4.7 ±0.2	5.3 ±0.2	4.9 ±0.2	4.1 ± 0.2
Aromatic content [%]	41.8 ± 1.4	43.2 ± 1.5	43.3 ±1.8	43.3 1.8	51.1 ±2.1
Resin content [%]	35.6 ±1.3	35.9 ± 1.3	37.7 ± 2.0	36.1 ±1.5	33.1 1.6
Asphaltene content [%]	15.8 ± 0.4	15.8 ±0.6	13.7 ± 0.3	15.5 ±0.6	11.0 ± 0.4
Wax content [%]	0.5	1.7	3.6	2.2	0.9
MMHC [-]	2.203	2.214	2.197	2.203	2.203

University of Nottingham UK | CHINA | MALAYSIA

Fundamental analysis

Fundamental analysis

 $\tau(t) = \tau_h(t_{heat}) + \tau_e(4h)$

$$\tau_{h}(t) = T_{ss} \cdot t + \frac{T_{ss} - T_{air}}{k_{h}} \left(e^{-k_{h}t} - 1 \right) \quad ; \ t < t_{heat}$$

$$\tau_{c}(t) = T_{air} \cdot \left(t - t_{heat} \right) + \frac{T_{max} - T_{air}}{k_{c}} \left(1 - e^{-k_{c}(t - t_{heat})} \right) \quad ; \ t > t_{heat}$$

Fundamental analysis

$$S(\tau) = \frac{C_1}{F_0} \cdot e^{-D\tau} \left(-1 + e^{\frac{D\tau}{2}}\right)^2$$

• Real data infrared

Type of bitumen

University of Nottingham

Type of bitumen

- Penetration grade
- Viscosity
- Density
- Thermal expansion
- Fractional distribution (SARA)
- Attenuated Total Reflection Fourier Transformed Infrared Spectroscopy
- Capillary tests

No significant correlation with any of these factors for the studied types of bitumen

Type of bitumen

Induction method faster and more energy efficient

f

There is a minimum temperature required for an effective and efficient healing

University of Nottingham

Heating method

Filled crack

Healed Crack

Granular crack

Not healed

4 days

There is an optimum heating time

Types of conductive particles

Type of conductive particles

Reductions in economic and environmental impact through the use of metal waste University of Nottingham UK | CHINA | MALAYSIA

Type of conductive particles

Type of conductive particles

		Type of fibre			
		Grit	Wool	Tyre	Shavings
	- Density				
Volumetric properties	- Air voids	•	•	•	•
	- Homogeneity of mix	٠	•	▼	•
	- Indirect tensile strength				
	- Resistance to water damage	▼ ▼	▼	•	•
Mechanical properties	- Stiffness modulus				
	- Particle loss resistance	▼	•	▼	•
	- Skid resistance				
	- Induction heating capacity				
Healing properties	 Self-healing properties 			▲ ▲ *	

▲ Increase ▼ Decrease • No significant effect (x1 – Slight effect; x2 – Moderate effect; x3 – Strong effect)

*Due to test configuration, results in real roads are expected to be better that those observed in the present investigation

Mix	RAP content in mix (%)	Ageing after compaction (days)	
1	0	0	New road (control)
2	0	3	Effect of easing
3	0	6	Effect of ageing
4	0	9	process during the
5	0	12	service me of the
6	0	15	Toau
7	20	0	Effect of mixing
8	40	0	aged material
9	60	0	(RAP) with new
10	80	0	material for a new
11	100	0	road

N_{0.5}

Number of cycles (N)

 N_{f}

 N_h

(%) (%) (%) (%) (%) Size (mm) Passin Passin Passin Passin Passin g g g g g 31.5 100 100 100 100 100 20 99.1 99.1 99.1 99.1 99.1 16 91.3 91.2 91.2 95.5 91 14 83.3 82.9 82.9 88.1 78.2 10 62 58.8 58.8 53.4 27.6 8 54.1 48.7 48.7 36.3 17.9 6.3 47.8 40.7 40.7 23.1 13.5 4 34.3 29.5 29.5 17.8 11.4 2.8 28.7 25 25 16.6 10.6 2 23.7 14 9 20.8 20.8 1 17 15 15 10.2 6.7 0.5 12.9 7.9 5.2 11.3 11.3 0.25 10.2 9.1 9.1 4.3 6.3 7.2 0.125 8.1 7.2 5.1 3.5 0.063 6.5 5.7 5.7 4.1 2.9 .7% Bitumen * $HI = \frac{N_f - N_{0.5}}{N_{0.5}}$ Air voids %

University of Nottingham UK I CHINA I MALAYSIA Fatigue life

University of Nottingham uk | CHINA | MALAYSIA

Fatigue life

Air word contant	Fatigue life without thermal	Longest fatigue life with	Ingrass
All void content	heating $(N_{0.5})$	thermal treatment	Increase
5%	21160	30218	42.8%
10%	11440	15419	34.8%
13%	2120	4657	119.7%
21%	1200	3333	177.8%
26%	227	721	217%

Breixo Gómez Meijide Nottingham Transportation Engineering Centre (NTEC) Room C20. Pavement Engineering Building. Faculty of Engineering University Park - Nottingham - NG7 2RD - United Kingdom Office: +44 (0)115 951 3900 - Mobile: +44 (0)752 122 2551 breixo.gomez.meijide@nottingham.ac.uk

14. 高片油 计运行 通過

Part: 1-2 – Full-scale demonstrator

Part 1-2 - Agenda

- full-scale Asphalt production (Task 5.1)
- test-section on duraBASt (Task 5.2)
 - construction
 - testing
 - healing
- evaluation process and LCA/LCCA are not presented during this event

Part 1-2 - Mix design and testing

- HEAL ROAD
- 1. The Healroad mixtures, developed by Cantabria University UC, are translated by Heijmans to Dutch raw materials

 \rightarrow volumetric approach / high density of steel particles results showed the required Type Test properties

2. Ravelling test at the PA variant: Rotating Surface Abrasion test (RSAT)

Part 1-2 - Full-scale Asphalt production (Task 5.1)

Determining the correct mixing procedure in a asphalt production plant

Several mixing-variants, produced in an asphalt plant \rightarrow mechanical tests

- \rightarrow No special and exceptional procedures are needed to produce the Healroad mixtures
- ightarrow Standard production plant is suitable with the usual way of adding additives
- \rightarrow Positive factor for the introduction of Healroad mixes in the European asphalt market

October 26th 2017

Part 1-2 - test section on duraBASt

October 26th 2017

Part 1-2 - Construction test-section on duraBASt (Task 5.2)

• Transport to duraBASt, laying and compaction

 \rightarrow Special attention to temperature (no segregation) / compaction in the correct window

October 26th 2017

Part 1-2 - test section on duraBASt

- failure criteria = stone loss
- HEIJMANS laboratory test with RSAT
 - 5 samples laboratory production
 - 5 samples duraBASt production
- BASt will use two loading points
 - first loading point = reference track
 - no healing at all six samples
 - surface observation (pictures)
 - second loading point
 - no healing at two samples
 - healing on four samples different
 moments

Slide 54

Part 1-2 - test section on duraBASt

- Accelerated Pavement Testing (APT)
 - Mobile Load Simulator MLS30
 - Super-Single (9.0 bar)
 4 loading wheels in closed chain
 - load = 75 kN speed = 7 km/h = 2000 Ü/h
 - lateral unite

±350 mm left and right (one whole program need approx. 12min)

Part 1-2 - test section on duraBASt

- Details to Induction machine
 - 1400 Volt
 - 312 kHz
 - 33 Ampere
 - Energy 7-7,5 kW
 - 40 cm Coil (2 pieces)
 - Condensators:
 4 x 0,33 μF

Part 1 - 2 - test section on duraBASt

Part: 2 - Onsite visit to duraBASt and HEALROAD demonstration

Part 2 - Onsite visit to duraBASt and HEALROAD demonstration

duraBASt – outdoor test area demonstration, investigation (Untersuchung), reference areal

October 26th 2017

